Working with data assets
List all your data assets
If you want to retrieve all the data assets you saved for one experiment, here is how :
from picsellia.client import Client
api_token = '4d388e237d10b8a19a93517ffbe7ea32ee7f4787'
project_token = '9c68b4ae-691d-4c3a-9972-8fe49ffb2799'
experiment = Client.Experiment(
api_token=api_token,
project_token=project_token
)
experiment.checkout('my_new_experiment')
experiment.list_data()
[
{
'id': 72,
'date_created': '2021-02-09T12:32:18.293746Z',
'last_update': '2021-02-09T12:32:18.293556Z',
'name': 'parameters',
'data': {'steps': 200000,
'nb_gpu': 1,
'batch_size': 8,
'learning_rate': 0.005,
'annotation_type': 'classification'
},
'type': 'table'
}
]
Delete all your data assets
If you think that your experiments needs a bit of cleansing, you can delete all the data assets you saved at once like this :
experiment.delete_all_data()
Retrieve an asset
If you want to retrieve a particular data asset, let's say the parameters of your last training, here is how you can do it :
experiment.get_data('parameters')
{'steps': 200000,
'nb_gpu': 1,
'batch_size': 8,
'learning_rate': 0.005,
'annotation_type': 'classification'}
Updating an asset
Now let's say that you want to change the value list of parameters for this training, here is how :
parameters = {
'steps': 5e6,
'nb_gpu': 8,
'batch_size': 64,
'learning_rate': 0.0055,
'annotation_type': 'detection'
}
experiment.update_data('parameters', data=parameters)
The method return the updated object
{
'id': 72,
'date_created': '2021-02-09T12:32:18.293746Z',
'last_update': '2021-02-09T12:32:18.293556Z',
'name': 'parameters',
'data': {'steps': 5000000.0,
'nb_gpu': 8,
'batch_size': 64,
'learning_rate': 0.0055,
'annotation_type': 'detection'},
'type': 'table'
}
Delete an asset
If you want to completely remove a data asset from all your visualizations, here is how :
experiment.delete_data('parameters')
Working with file assets
List all your file assets
If you want to retrieve all the file assets you saved for one experiment, here is how :
from picsellia.client import Client
api_token = '4d388e237d10b8a19a93517ffbe7ea32ee7f4787'
project_token = '9c68b4ae-691d-4c3a-9972-8fe49ffb2799'
experiment = Client.Experiment(
api_token=api_token,
project_token=project_token
)
experiment.checkout('my_new_experiment')
experiment.list_files()
The method return the list of files
[{'id': 22,
'date_created': '2021-02-09T12:32:18.022694Z',
'last_update': '2021-02-09T12:32:18.022465Z',
'large': False,
'name': 'config',
'object_name': '9a141ede-03dc-4e6c-a695-38661d9a97c3/pipeline.config'},
{'id': 23,
'date_created': '2021-02-09T12:32:18.068900Z',
'last_update': '2021-02-09T12:32:18.068723Z',
'large': True,
'name': 'model-latest',
'object_name': '9a141ede-03dc-4e6c-a695-38661d9a97c3/0/saved_model.zip'},
{'id': 24,
'date_created': '2021-02-09T12:32:18.112582Z',
'last_update': '2021-02-09T12:32:18.112410Z',
'large': True,
'name': 'checkpoint-data-latest',
'object_name': '9a141ede-03dc-4e6c-a695-38661d9a97c3/ckpt-0.data-00000-of-00001'},
{'id': 25,
'date_created': '2021-02-09T12:32:18.156945Z',
'last_update': '2021-02-09T12:32:18.156767Z',
'large': False,
'name': 'checkpoint-index-latest',
'object_name': '9a141ede-03dc-4e6c-a695-38661d9a97c3/ckpt-0.index'}]
Delete all your file assets
f you think that your experiments needs a bit of cleansing, you can delete all the file assets you saved at once like this :
experiment.delete_all_files()
Retrieve and download a file asset
If you only need to retrieve informations about a file you can use the following method
experiment.get_file('config')
{'id': 22,
'date_created': '2021-02-09T12:32:18.022694Z',
'last_update': '2021-02-09T12:32:18.022465Z',
'large': False,
'name': 'config',
'object_name': '9a141ede-03dc-4e6c-a695-38661d9a97c3/pipeline.config'}
If you need to download the file you can use the following method
experiment.download('config')
If the file size exceeds 5Mb or if you get errors while using download
, you might need to set the large
parameter to True
experiment.download('config', large=True)
Alternatively, you can download the file to a specified folder, just set the path
parameter to the path of the folder (must be an existing folder)
experiment.download('config', path='training')
Update a file asset
The update function is there if you need to perform update on file information such as its name.
experiment.update_file('config', name='new-config')
If you call the store method again, it will automatically erase the old file and replace if with the new one
Delete a file asset
If you want to remove a file asset from one of your experiment, here is how to do it.
from picsellia.client import Client
api_token = '4d388e237d10b8a19a93517ffbe7ea32ee7f4787'
project_token = '9c68b4ae-691d-4c3a-9972-8fe49ffb2799'
experiment = Client.Experiment(
api_token=api_token,
project_token=project_token
name='my_new_experiment'
)
experiment.delete_file('model-latest')
Be aware that this will also permanently delete the file from our storage.